WebHare for development

This manual will explain how to setup a local WebHare installation for development and will
guide you through building a website. We will be using Docker to manage the WebHare
installation. This guide assumes you’re using an up-to-date operating system, and if using
Windows, at minimum Windows 10 Professional.

v’ Docker limitations

Please note that Docker has some limitations (especially on Mac and Windows) in
performance and ease of development that you wouldn’t see on a production WebHare
installation, but gives a much easier setup experience. All production WebHare setups are

generally done in Docker on a Linux (virtual) machine.

If you have sufficient experience manually maintaining and compiling software, you can
alternatively install WebHare from source.

Installing WebHare

First, install Docker from https://www.docker.com/get-started.

On Windows
First, a folder is needed where all data will be stored. Run the following command to create it:

i | mkdir "%USERPROFILE%/whdata"

To start WebHare, run the following command:

1l | docker run -ti --rm --name webhare -p 80:80 -p 443:443 -v %USERPR

If Docker asks you whether you want to share your C: drive, you should probably do so.

If you run into std::bad_alloc errors, verify the commandline - you may be running into issues
with temporary files being created on NTFS (which doesn’t support unlinking the files after
creation and then mmap()ing them)

On macOS or Linux

First, a folder is needed where all data will be stored. Run the following command to create it
(you only need to do this once):

https://www.webhare.dev/reference/installation/fromsource
https://www.docker.com/get-started

1 | mkdir ~/whdata

To start WebHare, run the following command:

1 | docker run -ti --rm --name webhare -p 80:80 -p 443:443 -v ~/whdat

You'll see something similar to the following screen if WebHare started correctly:

WebHare ships with a command line interface named ‘wh'’. We can use docker to invoke this tool
for us. One use is to check WebHare's status. Let's see if everything is working correctly:

1 | docker exec webhare wh check

You will see something like:

Arnolds-MBP:~ arnold$ wh-moe3 check
WebHare 4.22.1 - 2 issues!

The email fallback FROM address has not been configured
Backend WebHare URL unknown

It's running, but we cannot connect to it yet . We need to be able to access what we often simply
call the ‘backend’ - the WebHare backend interface.

Setting up the Webhare backend interface

On a production server we would generally setup a proxy server to host the interface, but here
welll let the built-in webserver handle it by itself. We need an open port for virtual hosting so we
can run multiple websites on the same port (in our case: the WebHare backend and a future
output website).

https://gitlab.com/webhare/proxy#readme

v Nonstandard port numbers

We strongly recommend using the standard port 80/443 for your WebHare installation and
using virtual hosting - some features may be more difficult to setup or have subtle issues with
non standard port numbers. You will need to modify the docker command line used during

installation to open up other ports than 80 and 443.

To create a virtual hosted port on port 80 and host a site named ‘localhost’ on it, and create a
sysop account for yourself - preferably with a different password:

1 | docker exec webhare wh webserver addport --virtual 80
2 | docker exec webhare wh webserver addbackend http://localhost/

3 | docker exec webhare wh users adduser --sysop --password secret s

First login

Visit the URL you've just added - eg http://localhost/ and login and password specified above.
At the bottom right of the screen you will most likely have two messages - one warning to inform
you of unresolved issues and one question to ask for desktop notifications. If you click this

message your browser will ask you for permission to display notifications as browser
notifications from now on.

Setting up output
To configure output an Output webserver must be added. This can be done from the Webservers

application:

o Start the Webservers application from the WebHare start menu.
e Click the "Add" button and choose "Webserver".

[
b

=i Ml wetarreny

o The "Edit webserver" screen is opened.

http://localhost/

Edit webserver

Webserver type: @ WebHare output webserver
Host access rules only, no published content
WebHare backend (webinterface)

Bound to: Mame-based hosting v

LIRL: https:fwww.example.org/

Strict Transport Security (HSTS): | 1 year (recommended)

e Choose the appropriate settings
o Server type: Webhare output server
o Binding type; usually this is "Name-based hosting”, where the URL domain name
is used to look up the corresponding webserver.
o Forlocal development, http://127.0.0.1/ can be used.

o Click “OK” to save the webserver.

Creating a webdesign

explain webdesign basics (what is it, how to use it)

Creating a module

WebHare uses so-called "modules” to group code and data together in logical groups. These
modules are stored in the data folder, in the subfolder "installedmodules". This folder can contain
module folders, and module group folders (to logically group modules together).

To create a new module, use the following command:

docker exec webhare wh module create [modulegroupname/]<modulena

Create and initialize the webdesign

To create a new webdesign in a module, use the following command

docker exec webhare wh module createwebdesign <modulename>:<webdg

http://127.0.0.1/

domainname is used to create the namespace used inside the webdesign.
If domainname is “examnle com” the first nart of the namesnace tised in the webhdesian will
DECOITIE. T1LLP.// EXAITIPIE.COITI/

Creating the website

Creating a website that uses the webdesign is done in the Publisher application.

For more about the Publisher, visit the user manal.

o Start the WebHare publisher from the Start Menu
« Select the folder (or create a new folder and select it) where you want your website.
o Selectin ‘Menu’ option File > New > Website...
o The “New site” dialog is opened. You can now set:
© name;
o output URL;
o subfolder: for development purposes a subfolder is usually used to allow multiple
sites on one webserver URL.
e Inthetab ‘Design’ select your previously created webdesign.

e Press “OK" to confirm settings.

Creating content in your website

To create content, an RTD document should be added.

« Inthe Publisher application, select your website in the tree on the left.
e Click "New file”.

o Select "Rich text document” and press "OK".

e You can now select a name for your file.

o Make sure "Publish this file” is selected.

e Press"OK"

The file is added to the website, and can be edited in the RTD document editor. For more about
the editor, see the user manual.

o Double-click on the new file. This will open the document editor.
e Use the editor to add some content to this file.

e Press "Publish”, then answer "Yes".

http://docs.webhare.com/publisher
http://docs.webhare.com/rtd

o Close the editor by choosing "Exit” in the menu.

The content you have added is now displayed in the preview, and can be visited by selecting the
file and clicking the “View” button. The page will then be opened in a new tab or window.

Setting debug mode

When you have a website with a published page you can enable Website Debug settings to
obtain extra information for development and debugging.

o Select a published file within the website.

o Choose “Tools"” -> Set Website debug settings” from the Publisher menu.
o Make sure “Enable output debug mode” is checked.

o Click the “Save” button.

The published version of the file is displayed. On the page a debug tool block is displayed. When
you click it, debugging information and some more options are shown:

Assets: OK U
File: OK U

auto-reload CSS

| auto-reload page

auto-reload resources

full source map

hide tools

Example site
To start working with a complete site you can download an example site.

o First get the example module, using the following commands:

docker exec webhare wh module get https://gitlab.com/webhare/exa

o Download the archived version of the example website from
https://www.webhare.dev/downloads/example-site.wharchive.

e Open the Publisher application in WebHare.

o Select a folder in the left tree to place the example website.

o Upload the archive file and unpack the archive (double click).

o Select the extracted folder and choose “Sites -> Convert to site” from the Publisher

menu.

Convert folder to site

@ Are you sure you want to convert the folder ‘example-site’ to a site?

IEI Open the site settings dialog afterwards

Yes Mo

o Select "Open the site settings dialog afterwards" and click "Yes”.

o Select an output URL and a subfolder within that URL. If no output URL is available,
please create another output webserver first, or move other sites on an existing output
webserver to a subfolder within their output URL. You can access the website settings
of an existing site by right-clicking on a site and choosing "Website settings".

e Press "Ok" to convert the folder to a site.

e Run the following command (again):

docker exec webhare wh softreset

(For a working example site, see: https://examplesite.webhare.dev/)

When using this example design for your own created website, you'll have to modify the
contentsource for the search engine to ensure your own site is indexed. This can be done by
modifying the reference ‘site::example-site’ in search.siteprl.xml to something like ‘site::<your-site-
name>'.

When using the example site as basis for a new moduledesign, you have to rename a few items:

o The first part of the used namespaces in the harescripts and siteprofiles must be

changed to a new namespace used for your new moduledesign.

https://examplesite.webhare.dev/
https://www.webhare.dev/downloads/example-site.wharchive

o Thetags “examples:searchpage” (tag of the search page) and “examples:examplesite”

(tag of the search engine index for the site) must be renamed.

Changing layout

To edit the site template, goto your webhare data folder. You can find the files for the site layout
inwhdata/installedmodules/<modulename>/webdesigns/<webdesignname>/.

You can change the webdesign files described below to change the page. When making changes

to the files you may need to use the ‘refresh’ action (I:-J') for the assets to see the changes.

Assets: OK §)
File: OK U

auto-reload CSS
| auto-reload page
| auto-reload resources

full source map

hide tools

Javascript file

<webdesignname>.es is main javascript file. You need to import all other needed javascript
and (s)css files in this file.

CSS/SASS file
<webdesignname>.scss is the CSS / Sass file for styling.

Site profile

<webdesignname>.siteprl.xml - the site profile for the website. More information about
this file can be found in the references.

Inline images in the RTD files are set to a maximum width which is defined the attribute
‘maxcontentwidth’ in the ‘webdesign’ node.

https://www.webhare.dev/reference/siteprofiles

The site language can be found in the siteprofile in element ‘sitelanguage’.

You can activate statistics from Google by using/activating one of the settings in the siteprofile:

account="UA-XXXXXXX-X" />

account="GTM-XXXXXX" />

When using googleanalytics, by default ‘anonymizeip’ is enabled.

HareScript library
<webdesignname>.whlib - more about the HareScript library can be found in the references.

Witty Template
<webdesignname>.witty - more about the Witty template can be found in the references.

RTD Styling
/shared/rtd/rtd.css -You can find basic styling for RTD content in ‘/shared/rtd/rtd.css’

If you want to use a custom font, add at top the rtd.css file the import rule like:

1 | @import url(//fonts.googleapis.com/css?family=0pen+Sans:400, 700, 4

RTD-related JavaScript
/shared/rtd/rtd.es

RTD apply rules
/shared/rtd/rtd.siteprl.xml-XML apply rules for RTD documents.

Webdesign image folder
Folder <webdesignname>/web/img/

There is a <webdesignname>/‘web/img/’ folder where you can put all static images used in the
template. These images are accessible in the template by using [imgroot]
<imagefilename>.

The “htmlhead” component

The main witty template contains two required components, a htmlhead component and a
htmlbody component.

The htmlhead is used for elements inside the head-element of the rendered page.

https://www.webhare.dev/reference/harescript-language
https://www.webhare.dev/reference/witty

You can add additional meta tags inside the htmlhead component like meta tags for the site
icons.

Some basic elements and links to the compiled javascript and css for the webdesign are
automatically generated added to the head-element.

Opengraph meta is automatically added to the head-element if Opengraph plugin settings are
present in the siteprofile and applied to the rendered page.

To add the opengraph plugin add next to siteprofile within the part for apply rule all:

xmlns="http://www.webhare.net/xmlns/socialite"

site_name="WebHare - Examplesite"
type="website"
image="web/img/logo-big.png"

/>

n_7

A robots meta-tag (like ‘<meta name="robots" content="noindex">’) is automatically placed inside
the head-element if robots plugin settings are applied to the current page in the siteprofile.

xmlns="http://www.webhare.net/xmlns/consilio"/>

Changes are only visible in the output html after republishing the whole site.

The “htmlbody” component

The htmlbody is used for elements inside the body-element. Usually, this is used to render the
page header, navigation and footer of pages (elements that are present on every page of the
site).

It should at least have the macro [contents] which is used to render the actual contents of a page
(as rendered by rich documents, forms, prebuilt pages, etc.).

Adding navigation

To add navigation to the template you first need to edit the Harescript library
<webdesignname>.whlib in your editor. Inside this file you find a public objecttype

<webdesignname>Design.

In this objecttype you can find (initially commented out) the function GetPageConfig(), which
returns a record. All the fields in this return value can be used directly in the witty template.

Uncomment the function and change it to the following code:

UPDATE PUBLIC FUNCTION GetPageConfig()

{
RETURN [mainnav := this->GetMainNav()

1;

The main navigation will show all folders with titles and published content from the root folder
of the site. We can get a list of those folders by using a database SQL query on the table
system.fs_objects. This table contains all files and folders within the publisher tree.

Within a webdesign object, there are three objects available that contain information about the
currently rendered file:

To create the navigation, you have to access the database.
All files and folders can be retrieved from the ‘system’ database from the ‘fs_objects’ table. This
can be accessed by loading:

LOADLIB "mod::system/lib/database.whlib”;

For the main navigation we usually get all folders directly under the site main folder/siteroot with
a title and a published indexfile.

The query for the main navigation will then look like this:

FUNCTION GetMainNav()

RETURN (SELECT *
, 1sselected := this->targetobject->whfspath LIKE
FROM system.fs_objects
WHERE parent = this->targetsite->root

AND link != ""
AND title !'= ""
AND isfolder
ORDER BY ordering, ToUpperCase(title), name);

© 00 N OO O h WO N B

Y
R ©

The result is a RECORD ARRAY with the navigation items in each RECORD.

After this you can use the results for the main navigation directly in the witty template by adding
the navigation inside the htmlbody component like:

>
id="mainnav'">
HomeS
[forevery mainnav]
[title]
[/forevery]
4 p

1
2
3
4
5
6
7
8

</ P

‘[FOREVERY][/FOREVERY] iterates through the array with the navigation items.

Within the forevery loop you can use, besides the fields set within the navigation record,
condition checks like : ‘[IF FIRSTI/IF], ‘[IF LASTI[/IF], ‘[IF ODD][/IFY.

Or combinations like: ‘[IF NOT ODD][/IF], [IF ODD][ELSE][/IF]

To see the navigation working, make sure you have to add a published “Rich Text Document” file
to the site root. Then, add one or more folders (with title!), and also add published “Rich Text
Document” files to those folders. Make sure these documents are marked as index of the folder
(because the link to a folder is actually the link to its index file, but only if that file is published).

Subnavigation

Next, subnavigation is added, which will contain a list of all documents and folders in the current
folder.

First, alter the pageconfig return record to:

1 | RETURN [mainnav := this->GetMainNav()
subnav := this->GetSubNav(this->targetfolder->id)

1

And after the GetMainNav, add the following function:

FUNCTION GetSubNav(folderid)

RETURN (SELECT *
, 1sselected := this->targetobject->whfspath LIKE

FROM system.fs_objects
WHERE parent = folderid
AND link != ""
AND title != ""
AND id != this->targetfolder->indexdoc

AND (parent != this->targetsite->root OR NOT isfoldq
ORDER BY ordering, ToUpperCase(title), name);

Also, add the following to the witty template inside the htmlbody component:

>
[1if subnav]
< id="subnav”>
[forevery subnav]
[tit
[/forevery]
4 p
[/1f]
4 p

© 00 N O 0o h WO N B

Adding path/crumbtrail.
To add path navigation for current active page, alter the pageconfig return record to:

RETURN [mainnav := this->GetMainNav()
, Subnav := this->GetSubNav(this->targetfolder->id)
pathnav := this->GetPathNav()

1

Add at top of the file

1 | LOADLIB "mod::publisher/1lib/publisher.whlib";

The publisher.whlib library is needed for the function GetFolderTreelds() used for getting the
actual path.

And after the pageconfig the getpathnav function:

FUNCTION GetPathNav()

foldertree_ids := GetFolderTreeIDs(this->target

pathnav := SELECT *, title := title ?? name
FROM system.fs_objects
WHERE id IN foldertree_ids
AND link != ""
AND isfolder
ORDER BY SearchElement(foldertree_ids,

IF(Length(pathnav) > 0)

{
pathnav[0].title := "Home";

IF(this->targetobject->id != this->targetfolder->indexdoc
{
INSERT [link := this->targetobject->1ink
, title := this->targetobject->title ?? this->targ
] INTO pathnav AT END;

IF(Length(pathnav) = 1)
RETURN DEFAULT

RETURN pathnav;

And add the following code to the witty in the htmlbody component:

[if pathnav]
< id="pathnav">
[forevery pathnav]
[title]</11i>
[/forevery]

[/7if]

For styling the navigation you need to edit the scss file (<kwebdesignname>. scss).

Basic forms

If you want to add a contact form to the site, you can create a new file of type ‘Form’. You can
style the form by altering the content of /shared/forms/forms. scss. The full form layout,

with all basic fields, can be tested by selecting a file in your website in the Publisher and then
using the ‘Open forms test’ in the menu under option ‘Tools'.

Simple widgets in the RTD with only HTML and Javascript

You can add simple components to the RTD by adding additional rules to the webdesign
siteprofile and components to a Witty file.

For example if you want to offer a ‘weather’ widget (using https://weatherwidget.io/) option
inside the RTD:

o Create folderwidgets/weather/ inside the webdesign

e In this folder, add the file weather.siteprl.xml with the following content:

xmlns="http://www.webhare.net/xmlns/publisher/sitep
namespace="http://yourdomainname/xmlns/widgets/weat
title="Weather"

wittycomponent="weather.witty:weather">
>

o Also add the file “weather.witty” with the following content:

1 [rawcomponent weather]

2 | <div class="widget widget-weather">

3 <a class="weatherwidget-io" href="https://forecast7.com/en/52
4 <script>
)

6

7/

8

I'function(d, s,id){var js,fjs=d.getElementsByTagName(s)[0O]; i
</script>
</div>
[/rawcomponent]

By using ‘rawcomponent’ the content of this component will not be altered or interpreted while
rendered.

https://weatherwidget.io/

e Add to the main siteprofile (<webdesignname>.siteprl.xml) directly after the

existing applysiteprofile rule:

path="widgets/weather/weather.siteprl.xml" />

e Add to RTD siteprofile definition (/shared/rtd/rtd.siteprl.xml) inside the

<widgets /> element:

type="http://yourdomainname/xmlns/widgets/weather" />

e Go to the publisher and create a new RTD file in your website. Edit this file by double

clicking. You can add the weather widget using the “insert object” button: x

o Publish the file. After publishing the widget is displayed in the page.

Add extra properties to files or folders

You can add extra properties to a file or folder by adding rules to the siteprofile. The data for
these properties will be stored in a contenttype.

For example adding an SEO title option which overrides the title in html head element.

Add the following code to the end of the siteprofile (but before any <applysiteprofile> tag):

namespace="http://yourdomainname/xmlns/page" clong
type="string" name="seotitle" />
>

xmlns="http://www.webhare.net/xmlns/tollium/scrqg
name="pagesettings"
implementation="none"
>
position="title" where="after">
composition="contentdata" cellname="seotitle" wig

type="file" />

extension=".pagesettings" contenttype="htt(

The contenttype defines the structure of the storage for the new property. The tabextension
describes the extensions to the Publisher properties screen that are used to edit the property
values. And the apply node describes that the property screens are only displayed for files (not
for folders).

After adding this part to the siteprofile you have an extra field ‘SEO title’ in the file properties just
after the title field. To use this field in the template, you have to add some Harescript to the
GetPageConfig function.

You can use this->pagetitle to alter the page title in the title tag in the head-element. The
default title is the title of the current file if set, otherwise it's the folder title or name if folder title is
not set.

To change the page title add the following code add the beginning of the GetPageConfig
function:

pagesettings := this->targetobject->GetInstanceData("http:

IF (pagesettings.seotitle != "")
this->pagetitle := pagesettings.seotitle;

ELSE

{

© 00 N o 0o A W DN B

this->pagetitle := this->siteconfig.sitetitle;
IF (this->targetobject->title !="")
{

[St
W N RO

this->pagetitle := this->targetobject->title || " | | this

}
ELSE IF (this->targetfolder->id != this->targetsite->root AND

{

T O Y
© N o g A~

this->pagetitle := this->targetfolder->title || " - | |

N N
R © ©

Adding a news folder with news items

To add a news folder, in which every news item has an associated publication date, the following
steps can be taken:

First, add a new custom ‘news’ folder type to the siteprofile:

namespace="http://yourdomainname/xmlns/folders/news'
typedef="http://yourdomainname/xmlns/folders/news"
title="News"

tolliumicon="tollium:folders/news" />

>

© 00 N O 0o b W DN B

type="folder" />
typedef="http://yourdomainname/xmlns/folders/

[
(]

[
=

To add the storage and property screen extensions for the publication date, modify the “page”
contenttype in the siteprofile to the following:

namespace="http://yourdomainname/xmlns/page" cloneo
type="string" name="seotitle" />
type="datetime" name="date" />

>

And add the following code for the property screen extensions:

xmlns="http://www.webhare.net/xmlns/tollium/scree
name="newspagesettings"
implementation="none"
>
position="description" where="after">
composition="contentdata" cellname="date" required

type="file" parenttype="http://yourdomainname/xmlns/folde
type="index" /></not>

extension=".newspagesettings" contenttype="ht

You can now create a news type folder and every file (except the index) in this folder has an extra
date field just after the description field in the file properties.

To display the date in the template add

1 | LOADLIB "wh::datetime.whlib";

At the top of the Harescript library [webdesignname].whlib so you can use the date
formatting function.

Then add the date to the pageconfig function return value. The FormatDateTime function is used
>

LV MIVCULTIL LD UULL T W T U U TV L.

RETURN [mainnav := this->GetMainNav()
subnav := this->GetSubNav(this->targetfolder->id)
pathnav := this->GetPathNav()
date := FormatDateTime("%d %B %Y", pagesettings.date,

After this you can add next line to the witty template

1 | [1f date]< class="pagedate">[date]</ >[/1f]

Adding headerimage to page
If you want a pageimage for every page, you need to add the following.

Change xml for the page contenttype properties to:

namespace="http://yourdomainname/xmlns/page" cloneo
type="string" name="seotitle" />

type="datetime" name="date" />
type="file" name="headerimage" />

x-doclink:FormatDateTime

</ P

Then add to tabextention named ‘pagesettings’

N

title="Header image'">
composition="contentdata"
cellname="headerimage"
width="1pr"
height="350px"
title="Header image"
allowedactions="all refpoint" />

1
2
3
4
5
6
7
8

N
~N

You should now see an extra tab ‘Header image' in the properties of every file in the site.

To display the header image in the website first add

1 | LOADLIB "mod::system/lib/cache.whlib";

at the top of the harescript library ‘[webdesignname].whlib® so you can use the image cache and
resize function WrapCachedlmage.

Now you can add

, headerimage := WrapCachedImage(pagesettings.headerimage,
[method = "fill"
, setwidth := 2048
, setheight := 350

D

inside the pageconfig return record.

In the witty template you change the header element to

>

[1f headerimage]

< class="headerimage" src="[link]" alt=""/>
[/if]
< id="mainnav”>

x-doclink:WrapCachedImage.

[forevery mainnav]
[title
[/forevery]
4 p

</ P

and add the additional appropriate css styling to [webdesignname].scss

Add extra properties to site

You can add extra properties to the site folder by adding rules to the siteprofile xml

f— . . . - . R

Add following to the siteprofile:

namespace="http://yourdomainname/xmlns/site">
type="array" name="footerlinks">

type="string" name="title" />

type="intextlink" name="1link" />

xmlns="http://www.webhare.net/xmlns/tollium/scre

name="sitesettings"

implementation="none"

>

title="Footer">
title="Footer links" />

rowselect="true"

composition="contentdata"

cellname="footerlinks"

roweditscreen=".editfooterlinks"

width="1pr"

height="1pr"

orderable="true">

name="title" title="Title" type="text" width="1(
name="1ink" title="Link" width="2pr"

>
type="folder" pathmask="/" />
extension=".sitesettings" contenttype="htt(

name="editfooterlinks"
title="Edit link"
implementation="rowedit"
minwidth="350px"
xmlns="http://www.webhare.net/xmlns/tollium/screens'">
>
name="row" />
>

composition="row" cellname="title" title="Title"
composition="row" cellname="1link" title="LinK

buttons="ok cancel" />

And add at top namespace for components ‘xmins:p’ to the siteprofile

xmlns="http://www.webhare.net/xmlns/publisher/sitep
m="http://www.webhare.net/xmlns/system/moduled
p="http://www.webhare.net/xmlns/publisher/comg

>

After this you see an extra tab ‘Footer’ in the properties of the site folder where you can add links
for the footer.

To display the footer links in the template first add

1 | LOADLIB "mod::publisher/lib/publisher.whlib";

in top of the harescript library [webdesignname].whlib so you can use the function
GetlntextLinkTarget for link resolving.

x-doclink:GetIntextLinkTarget

Then add to the pageconfig function

sitesettings := this->targetsite->rootobject->GetInstancel

And add in the return record of the pageconfig function

1 | , footernav := (SELECT title, link := GetIntextLinkTarget(link)

Now you can use footernav in the witty template like:

N

>
[1f footernav]
< id="footernav">
[forevery footernav]
[title]
[/forevery]
4 p
[/1f]
</

© 00 N O 0o b WO N B

Adding custom widgets with extra properties in RTD

Adding a custom widget in the RTD with extra properties like a two columns widget
Create folder widgets/twocolumns/

To this folder, add file: twocolumns.siteprl.xml with the following content:

xmlns="http://www.webhare.net/xmlns/publisher/sitep
namespace="http://yourdomainname/xmlns/widgets/twoco
title="Two columns"
editfragment=".edittwocolumns"

renderlibrary="twocolumns.whlib"
renderobjectname="EmbedTwoColumns"
wittycomponent="twocolumns.witty:twocolumns"
>

name="left" type="richdocument" />
name="right" type="richdocument" />
>

>

name="edittwocolumns"
xmlns="http://www.webhare.net/xmlns/tollium/screens"
implementation="none">

>

width="1pr" />
width="1pr" />

height="1pr">
cellname="1left"
composition="contentdata"
errorlabeltid=".left"
required="true"
width="400px"
height="1pr"
minheight="330px"
/>

>

height="1pr">
cellname="right"

composition="contentdata"
errorlabeltid=".right"

required="true"
width="400px"
height="1pr"
minheight="330px"
/>

Create file twocolumns.witty with content:

[component twocolumns]
< class="widget-twocolumns">
class="col">
[left]
</ P
< class="col">
[right]
</ P
</ P

© 00 N o 0o A WODN B

[/component]

=
(©

Create file twocolumns.whlib with content:

<?wh
LOADLIB "mod: :publisher/lib/widgets.whlib";

PUBLIC EmbedTwoColumns EXTEND WidgetBase
<

MACRO PTR left;

MACRO PTR right;

1
2
3
4
5
6
7
8
9

MACRO NEW()
{

O
N wNR O

UPDATE PUBLIC MACRO Render ()
{

(I
o O

this->EmbedComponent([left := this->left
, right := this->right
1),

NN BB
R ® © 0 ~N

Add to the main siteprofile (<webdesignname>.siteprl.xml) directly after the existing
applysiteprofile rule:

this->left := PTR this->context->0penRTD(this->data.left)->Rq
this->right := PTR this->context->0penRTD(this->data.right)-

path="widgets/twocolumns/twocolumns.siteprl.xm

For styling add file twocolumns.css to the folder with:

.widget-twocolumns

{
flex;

}

.widget-twocolumns > .col
{
0 1 50%,
50%;
15px;

© 00 N O O b WO N B

}

.widget-twocolumns > .col + .col

{

B R R
N RO

15px;
0;

(A
Dow

}
@media(: 600px)

{

PR R
N o o

.widget-twocolumns

{

B
© ©

block;

N
(©]

3

.widget-twocolumns > .col

{

N NN
w N B

0;

N
i

3

.widget-twocolumns > .col + .col

N NN
~N O Ol

0;

W NN
© ©

Note: Use .css file when you want to use the styling in RTD-editor because editor preview does
not handle .scss files

Add to main scss file definition <webdesignname>.scss

1_| @import "./widgets/twocolumns/twocolumns.css";

Add to RTD siteprofile definition (/shared/rtd/rtd.siteprl.xml)

after ‘<css path="rtd.css" />

path="../../widgets/twocolumns/twocolumns.css" />

(This is used by the RTD-editor to preview the widget)

and inside the <widgets /> element:

type="http://yourdomainname/xmlns/widgets/twocolumns"

Adding a search page

This uses the integrated WebHare search engine called ‘Consilio’.

Create the folder pages/search/.

Add to this folder the file search.siteprl.xml with the following content:

xmlns="http://www.webhare.net/xmlns/publisher/sitep
namespace="http://examplesite.webhare.com/xmlns/typeqd

webpageobjectname="search.whlib#SearchPage'
xmlns="http://www.webhare.net/xmlns/consilio" noindex
>

© 00 N o 0o A WODN B

xmlns="http://www.webhare.net/xmlns/consilio" name="exa

=
(o)

type="publisher:webhare" folder="site: :examplg

(IRt
w N R

Add file search.whlib to the folder with the following content:

<?wh

LOADLIB "wh::witty.whlib";

LOADLIB "mod::consilio/lib/api.whlib";
LOADLIB "mod: :publisher/lib/webdesign.whlib";
LOADLIB "mod::system/lib/webserver.whlib";

PUBLIC SearchPage EXTEND DynamicPageBase
<

© 00 N OO 0o b W N B

UPDATE PUBLIC MACRO PrepareForRendering(webcontext)

{
INSERT "searchpage" INTO webcontext->htmlclasses AT END;

T I Y
W N RO

UPDATE PUBLIC MACRO RunBody(webcontext)
{

Y
(SN

words := GetWebVariable("words");
results := RunConsilioSearch("modulename:websitename",

B R R
© N O

EmbedwittyComponent(this->pagefolder || "search.witty:searc

N NN B
N B O ©

Next add the file search.witty to the folder with the following content:

[component search]
< action="./" method="get">
type="search" value="[words]" name="words" placeholde
type="submit">Search</ >

class="results">
[1f totalcount]

[totalcount] item(s) found for '[words]'.
[elseif words]

No items found for '[words]'.
[else]

No search term given
[/if]

[if results]
< class="searchresults">
[forevery results]

<b class="title">[if title][title][else]<i>No titld
[1f summary]
< class="summary">[summary]</
[/1if]

</1i>
[/forevery]

[/1if]
4 p

[/component]

To make the consilio-search engine to create summaries of just the content of a page, add html
comments, in the main witty template around the [contents] macro else the summary will also
contain the navigation and footer content.

[contents]

Add to the main siteprofile (<webdesignname>.siteprl.xml) directly after the existing
applysiteprofile rule(s):

1 | < path="pages/search/search.siteprl.xml" />

Finally, create in the website a new file of type ‘Search page. The filetype will not be visible
immediately, you'll need to enable “Show all types’. In this case that’s probably okay as you don't
need site users to be able to create multiple search pages. But if you want to enable users to
select the Search page type, add the following code to the site profilel:

>

type="all" />

typedef="http://examplesite.webhare.com/xmlns

For styling add ‘search.css’ (or .scss) to the folder and add to main scss file definition
(<webdesignname>.scss)

1 | @import "./pages/search/search.css";

and put your styling for the search page in the search.css file.

