
State management
Many applications involve passing state between pages or (RPC) requests. A developer needs to
be aware when state is passed in such a way that the client can see or modify it (eg. URL
variables, cookies, REST parameters) and take proper precautions to prevent leakage of data or
unauthorized access to a website or system.

WebHare offers some APIs to help encrypt these values when they are passed 'through' a client
but even with encryption you should be careful of 'replay' attacks where the client reuses an
encrypted value without having to actually understand it - you might not be able to read the
session cookie you stole from a sysop, but it may still provide you with the same access if you
can use it.

Cookies and (URL) variables

Cookies should have the httponly and secure flags whenever possible (%UpdateWebCookie
already sets 'httponly' by default). Avoid Javascript-readable cookies even if they do not contain
any sensitive data at all - it will save you from having to explain their harmlessness during a
security audit.

You can ask UpdateWebCookie for an encrypted cookie (which can be read using
%GetDecryptedWebCookie) but you will still need to be careful about replay attacks by whoever
holds their value.

Further tips

Injection and cross-site scripting

Do not consider a WRD_GUID by itself to be proof of anything - they are too easily

leaked. If you need a secure way to identify a WRD entity, encrypt the guid

●

Scopes for %EncryptForThisServer must be unique for each different use, attackers may

try to inject an encrypted token into a different scope to see if anything can be learned

from it.

●

Do not worry about variable being passed between screens inside a Tollium application

- unlike RPC calls, data passed in function calls inside a tollium (eg the data passed to a

LoadScreen/RunScreen) is not available to a client.

●

WebHare does a lot to prevent injections and XSS by design: HareScript's SQL integration
isolates you from the raw database, the Witty template language has sane defaults to prevent
most common cases of incorrect encoding. But, you still need to be aware of potential issues
and avoid dangerous patterns:

SQL Injections

Any use of INSERT, SELECT, UPDATE and DELETE as part of the HareScript language itself is
safe as these expressions are automatically converted to parameterized SQL statements before
being passed to the database.

However, if you try to directly interface with databases by sending raw statements, you will still
need to take the proper precautions and use parameter or escaping if you accept external input.
We recommend just using HareScript SQL wherever possible, and using %DynQuery if you need
to build queries at runtime.

Path injections

Do not generate file- or pathnames based on user input - use wrapped blob records
(members/attributes of file/image type which store filenames inside the record) where possible,
or generate names based on generic UUIDs or time-of-day.

You should especially avoid writing anything to the filesystem that was originally supplied by a
user, as you would generally also lose transactional integrity and backup coverage.

Encoding in Witty

If you find yourself needing to specify an explicit encoding in witty (eg `[title:html]` or worse,
`[data:none]`) doublecheck if there isn't a way to avoid it. Be especially careful when using the :url
encoding - it's rarely the right thing to do. URLs should generally be constructed in HareScript, not
directly in Witty.

The most common exception to this is the textarea, which generally needs a :value encoding for
its content (ie: <textarea>[currentdata:value]</textarea>)

Encoding in HareScript

The text EncodeXXX functions (eg EncodeHTML, EncodeURL, EncodeValue) in HareScript are
easy to confuse or forget. You can often avoid these:

Generating HTML in JavaScript

If you're building a URL, consider %UpdateURLVariables (and the other url.whlib

functions)

●

If you find yourself needing EncodeHTML or EncodeValue, consider using Witty●

Avoid generating HTML directly from HareScript. Again, consider a Witty template●

Avoid innerHTML in JavaScript. Use textContent where possible. Consider using JSX or other
templating solutions if you're building complex DOM nodes in JavaScript

Sensitive data
WebHare offers some tooling to deal more safely with various sensitive or personal (PII) data you
may process.

Auditing

WebHare ships with a few reporting mechanisms to help you find potentially sensitive data and
audit who has access to this data.

Automatic deletion

You can mark files for automatic deletion at a certain date by setting the deletion property in the
lifecycle metadata. Files such as cached import data or WRD schema backups that may contain
sensitive data should be marked for automatich deletion to ensure they can't easily linger around
even when copied or synced between WebHare servers (the lifecycle metadata is cloned too
when copied).

You can find the file's planned deletion date in its object properties on the Tasks tab (sysop and
supervisor only) and set it using SetInstanceData in code:

fileobj->SetInstanceData("http://www.webhare.net/xmlns/publisher/lifecy
 [deletion := AddDaysToDate(14, GetCurrentDatetime())
]);

Use `wh gdprscan` on the commandline to get an overview of WRD schemas and

database tables that could potentially contain personal data.

●

Walk through the "Objects and Rights" view in User and rights management to see users

with (implicit) access to sensitive data.

●

Publisher Search can search for forms by retention period. Watch for forms with

suspiciously long retention periods

●

